Resultado de API de MediaWiki

Esta é a representación HTML do formato JSON. O HTML é bo para depurar, pero non é axeitado para usar nunha aplicación.

Especifica o parámetro format para cambiar o formato de saída. Para ver a representación non HTML do formato JSON, define format=json.

Consulta a documentación completa ou a axuda da API para obter máis información.

{
    "compare": {
        "fromid": 1,
        "fromrevid": 1,
        "fromns": 4,
        "fromtitle": "Testwiki:Zona de probas",
        "toid": 2,
        "torevid": 2,
        "tons": 0,
        "totitle": "\u00c1lxebra Lineal: Produto interno",
        "*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Li\u00f1a 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Li\u00f1a 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">A </del>'''<del class=\"diffchange diffchange-inline\">zona de probas</del>''' \u00e9 <del class=\"diffchange diffchange-inline\">para realizar experimentos </del>de <del class=\"diffchange diffchange-inline\">edici\u00f3n e visualizar os resultados no '''Wikibooks en galego'''. Pode facer libremente cantas probas estime oportuno. Ningu\u00e9n lle vai chamar a atenci\u00f3n polos cambios que faga nesta p\u00e1xina</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Template:\u00c1lxebra}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;br clear=\"both\"&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">En [[\u00c1lxebra Lineal]], chamamos </ins>'''<ins class=\"diffchange diffchange-inline\">produto interno</ins>''' <ins class=\"diffchange diffchange-inline\">a unha funci\u00f3n de dous vectores que satisfai determinados axiomas. O [[produto escalar]], comumente usado na [[xeometr\u00eda euclidiana]], </ins>\u00e9 <ins class=\"diffchange diffchange-inline\">un caso especial </ins>de <ins class=\"diffchange diffchange-inline\">produto interno</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">As edici\u00f3ns ou comentarios que se po\u00f1an nesta p\u00e1xina non son permanentes ou \u00fanico que permanece \u00e9 este texto introductorio. Cada certo tempo borrase o contido da '''zona de probas'''.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Definici\u00f3n==</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Premendo en '''editar''' podese cambiar o contido</del>. <del class=\"diffchange diffchange-inline\">Na opci\u00f3n '''Amosa o previo''' obtemos unha previsualizaci\u00f3n da edici\u00f3n. Con '''Garda </del>a <del class=\"diffchange diffchange-inline\">p\u00e1xina'''</del>, <del class=\"diffchange diffchange-inline\">queda gardado o resultado e rematou a edici\u00f3n. E unha boa pr\u00e1ctica escribir en '''Resumo''' un pequeno comentario das probas realizadas.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Sexa \u2018\u2018\u2018V\u2019\u2018\u2018 un [[espazo vectorial]] sobre un [[corpo_(matem\u00e1tica)|corpo]] \u2018\u2018\u2018K\u2019\u2018\u2018</ins>. <ins class=\"diffchange diffchange-inline\">En \u2018\u2018\u2018V\u2019\u2018\u2018, p\u00f3dese definir </ins>a <ins class=\"diffchange diffchange-inline\">[[funci\u00f3n]] binaria &lt;math&gt;\\langle \\cdot</ins>,<ins class=\"diffchange diffchange-inline\">\\cdot\\rangle: V \\times V \\rightarrow K&lt;/math&gt; (denominada \u2018\u2018\u2018produto interno\u2019\u2018\u2018), que satisfai os seguintes axiomas:</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">: &lt;math&gt;\\langle u,v\\rangle\u00a0 = \\overline{\\langle v,u\\rangle }&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">: &lt;math&gt;\\langle u+v, w\\rangle\u00a0 = \\langle u,w\\rangle\u00a0 + \\langle v,w\\rangle&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">: &lt;math&gt;\\langle \\lambda u, v\\rangle\u00a0 = \\lambda \\langle u, v\\rangle&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">: Se &lt;math&gt;v \\ne 0&lt;/math&gt;, ent\u00f3n &lt;math&gt;\\langle v, v\\rangle &lt;/math&gt;&amp;gt; &lt;math&gt;0&lt;/math&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">----</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">en que \u2018\u2018u\u2019\u2018, \u2018\u2018v\u2019\u2018 e \u2018\u2018w\u2019\u2018 son vectores </ins>de <ins class=\"diffchange diffchange-inline\">\u2018\u2018\u2018V\u2019\u2018\u2018, e \u2018\u2018&amp;lambda;\u2019\u2018 \u00e9 un elemento de \u2018\u2018\u2018K\u2019\u2018\u2018.</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">'''A partir </del>de <del class=\"diffchange diffchange-inline\">aqu\u00ed pode facer as s\u00faas probas:'''</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">----</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Unha proba feita por min ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">A partir deses axiomas, \u00e9 pos\u00edbel probar as seguintes consecuencias:</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Esta \u00e9 unha proba para ver como vai isto. Quero ver unha \u00f1 escrita</del>, <del class=\"diffchange diffchange-inline\">unha acentuaci\u00f3n e m\u00e1is un ping\u00fcino.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">: &lt;math&gt;\\langle u</ins>, <ins class=\"diffchange diffchange-inline\">v+w\\rangle\u00a0 = \\langle u, v\\rangle\u00a0 + \\langle u, w\\rangle&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">: &lt;math&gt;\\langle u, \\lambda v\\rangle\u00a0 = \\overline{\\lambda}\\langle u,v\\rangle&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">: Se &lt;math&gt;v = 0&lt;/math&gt;, ent\u00f3n &lt;math&gt;\\langle v, v\\rangle\u00a0 = 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">: Se &lt;math&gt;\\langle v, v\\rangle\u00a0 = 0&lt;/math&gt;, ent\u00f3n &lt;math&gt;v = 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Vexamos como vai o tema das ecuaci\u00f3ns:</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Exemplos===</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">&lt;math&gt;\\int_{-\\infty}^{\\infty} \\frac{1}{\\sqrt{2 \\pi}} \\exp(-x^2/2) dx&lt;/math&gt;</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Vou ver como queda ....</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">O [[produto escalar]] sobre o espazo vectorial &lt;math&gt;\\mathbb{R}^3&lt;/math&gt; satisfai os axiomas do produto interno e def\u00ednese por:</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Agora vou probar coas \u00a1admiraci\u00f3ns!</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;\\langle (x_1, y_1, z_1), (x_2, y_2, z_2)\\rangle = x_1x_2 + y_1y_2 + z_1z_2&lt;/math&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">\u00bfQuedar\u00e1 ben?</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">Se \u2018\u2018f\u2019\u2018 e \u2018\u2018g\u2019\u2018 son d\u00faas funci\u00f3ns, \u00e9 pos\u00edbel definir o produto interno:</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange\">:&lt;math&gt; \\langle f, g \\rangle = \\int f(x)\\overline{g(x)}\\,dx&lt;/math&gt;</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Novas probas</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Vetores ortogonais==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">hijo</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">jbkhvj</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Category:Ecuaci\u00f3n|Zona de probas</del>, <del class=\"diffchange diffchange-inline\">Wikibooks:]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dise que dous vectores &lt;math&gt;u</ins>, <ins class=\"diffchange diffchange-inline\">v \\in V&lt;/math&gt; son \u2018\u2018\u2018ortogonais\u2019\u2018\u2018 se &lt;math&gt;\\langle u, v\\rangle\u00a0 = 0&lt;/math&gt;.</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>&lt;!--<del class=\"diffchange diffchange-inline\">Por favor</del>, non <del class=\"diffchange diffchange-inline\">borrar </del>a <del class=\"diffchange diffchange-inline\">categor\u00eda</del>--&gt;</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Consecuencias:</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[Category</del>:<del class=\"diffchange diffchange-inline\">Axuda|Zona </del>de <del class=\"diffchange diffchange-inline\">probas</del>, <del class=\"diffchange diffchange-inline\">Wikibooks</del>:]]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Se &lt;math&gt;\\langle u, v\\rangle = 0, \\forall v \\in V&lt;/math&gt;, ent\u00f3n &lt;math&gt;u = 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Se &lt;math&gt;\\langle T(u), v\\rangle = 0, \\forall u,v \\in V&lt;/math&gt;, ent\u00f3n &lt;math&gt;T = 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Complemento ortogonal==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Sexa &lt;math&gt;v \\in V, v \\ne 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Def\u00ednese o complemento ortogonal de \u2018\u2018v\u2019\u2018, &lt;math&gt;v^\\perp&lt;/math&gt;, como:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;v^\\perp = \\{ v \\}^\\perp = \\{ u \\in V\u00a0 | \\langle u, v \\rangle = 0 \\}. &lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Consecuencias:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;v^\\perp&lt;/math&gt; \u00e9 un subespazo vectorial de V</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Sexa &lt;math&gt;W&lt;/math&gt; un subespazo vectorial de V, e &lt;math&gt;\\alpha = \\{v_1, v_2, \\ldots, v_n\\}&lt;/math&gt; unha base de &lt;math&gt;W&lt;/math&gt;. &lt;math&gt;v \\in W^\\perp \\iff v \\in v_i^\\perp, i = 1, \\ldots, n&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;(W^\\perp)^\\perp = W&lt;/math&gt;, W \u00e9 subespazo de V.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Norma==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Sexa \u2018\u2018V\u2019\u2018 un espazo vectorial sobre o corpo \u2018\u2018K\u2019\u2018, con produto interno.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Def\u00ednese a \u2018\u2018\u2018norma\u2019\u2018\u2018 ou \u2018\u2018\u2018lonxitude\u2019\u2018\u2018 dun vector &lt;math&gt;v \\in V&lt;/math&gt; como sendo o n\u00famero &lt;math&gt;\\sqrt{\\langle v, v \\rangle}&lt;/math&gt;, que indicamos por &lt;math&gt;|v|&lt;/math&gt;.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Consecuencias:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;|v| = 0 \\Longleftrightarrow v = 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Se &lt;math&gt;v \\ne 0&lt;/math&gt;, ent\u00f3n &lt;math&gt;|v| &gt; 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;|\\lambda v| = |\\lambda| |v|, \\forall \\lambda \\in K, v \\in V&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Se &lt;math&gt;\\langle u, v \\rangle = 0&lt;/math&gt;, ent\u00f3n &lt;math&gt;|u + v|^2 = |u|^2 + |v|^2&lt;/math&gt; (Teorema de Pit\u00e1goras)</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Proxeci\u00f3n ortogonal==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Proxeci\u00f3n dun vector v na direcci\u00f3n dun vector u, en que u &amp;ne; 0===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Def\u00ednese \u2018\u2018\u2018esa\u2019\u2018\u2018 proxeci\u00f3n como sendo o vector</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt;\\mbox{prox}_uv = \\frac{\\langle v, u \\rangle}{\\langle u, u \\rangle} \\cdot u&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">===Proxeci\u00f3n dun vector \u2018\u2018v\u2019\u2018 sobre un subespazo vectorial \u2018\u2018W\u2019\u2018 de \u2018\u2018V\u2019\u2018===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Sexa &lt;math&gt;W = [u_1, u_2]&lt;/math&gt;, en que &lt;math&gt; \\{ u_1, u_2 \\}&lt;/math&gt; \u00e9 unha base ortogonal de \u2018\u2018W\u2019\u2018.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt;\\mbox{prox}_Wv = \\mbox{prox}_{u_1}v + \\mbox{prox}_{u_2}v&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Desigualdade de Cauchy-Schwarz==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dados &lt;math&gt;u,v \\in V&lt;/math&gt;, ent\u00f3n &lt;math&gt;| \\langle u, v \\rangle | \\le |u| \\cdot |v|&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Desigualdade triangular==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt; |u + v| \\le |u| + |v|, \\forall u, v \\in V&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Base ortogonal e ortonormal==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Unha base &lt;math&gt; \\{ v_1, v_2, \\ldots, v_n \\} &lt;/math&gt; de V \u00e9 dita ortonormal se &lt;math&gt; \\langle v_i, v_x \\rangle = \\delta ix&lt;/math&gt;, en que </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;\\delta ix = 1&lt;/math&gt;, se i = x</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;\\delta ix = 0&lt;/math&gt;, se i &amp;ne; x</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>&lt;!--</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt; \\delta ix = \\left\\{ \\begin{array}{ll} 1, &amp; \\mbox{se } i=x \\\\ 0</ins>, <ins class=\"diffchange diffchange-inline\">&amp; \\mbox{se } i \\ne x\\end{array}\\right.&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">--&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">A base \u00e9 ortogonal se os vectores son ortogonais dous a dous.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Propiedade: \u2018\u2018n\u2019\u2018 vectores </ins>non<ins class=\"diffchange diffchange-inline\">-nulos e ortogonais dous a dous, nun espazo de dimensi\u00f3n \u2018\u2018n\u2019\u2018, son linearmente independentes.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Proceso de ortogonalizaci\u00f3n de Gram-Schmidt==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dada unha base &lt;math&gt; \\{ v_1, v_2, \\ldots, v_n \\} &lt;/math&gt; de V, podemos atopar, </ins>a <ins class=\"diffchange diffchange-inline\">partir desta base,</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">unha base ortogonal &lt;math&gt; \\{ u_1, u_2, \\ldots, u_n \\} &lt;/math&gt; de V.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt; u_i = v_i </ins>- <ins class=\"diffchange diffchange-inline\">\\sum_{k=1}^{i</ins>-<ins class=\"diffchange diffchange-inline\">1}\u00a0 \\frac{ \\langle v_i, u_k \\rangle }{ \\langle u_k, u_k \\rangle } u_k &lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Distancia entre dous vectores==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Def\u00ednese a distancia entre dous vectores calquera, \u2018\u2018u\u2019\u2018 e \u2018\u2018v\u2019\u2018, como sendo</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">&lt;math&gt;d(u,v) = |u - v| &lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Unha funci\u00f3n distancia ten as seguintes propiedades:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;d(u, v) \\xe 0&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;\\quad d(u, v) = 0 \\Leftrightarrow u = v&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:&lt;math&gt;d(u, v) = d(v, u)&lt;/math</ins>&gt;</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\">&lt;math&gt;d(u,v) \\le d(u, w) + d(w, v)&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Tales propiedades poden ser facilmente verificadas pola definici\u00f3n de norma.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Mellor aproximaci\u00f3n dun vector v de V por un vector de W, subespazo vectorial </ins>de <ins class=\"diffchange diffchange-inline\">V==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Se &lt;math&gt;d(v, u) \\le d(v, u'), \\forall u' \\in W&lt;/math&gt;</ins>, <ins class=\"diffchange diffchange-inline\">ent\u00f3n u \u00e9 o vector de W que d\u00e1 a aproximaci\u00f3n m\u00e1is adecuada de v por un vector de W.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Demostrase que &lt;math&gt;u = prox_W v&lt;/math&gt;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Template:\u00c1lxebra}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Categor\u00eda</ins>:<ins class=\"diffchange diffchange-inline\">\u00c1lxebra lineal</ins>]]</div></td></tr>\n"
    }
}